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Abstract. There are techniques such as the Singular-Spectrum Analysis (SSA)
which jointly with Principal Component Analysis (PCA). help us to analyze the
underlying structures of a time series and condense them for their study. Using
such information with the Multidimensional Scaling (MDS), we can find a
representation that allows localing hidden regularitics and thus classify the
analyzed data. In this paper we present the study of lime series of diverse nature
using the three abovementioned techniques and show how they group in a
bidimensional plane according to similar pallerns within their components
disregarding the dynamics of the series.

1 Introduction

Finding similarity among signals in a time scrics databasc has drawn plenty of
attention in the data mining area in view of the fact that it is a very useful ool for
analysis and knowledge extraction of phenomena [1]. A main aspecct in similarity
scarch is to definc a set of relevant characteristics and find a metric or scheme (o
classify the data in accordance with defined crileria, i.c. the time series classification.
The time series classification problem is still open because no specific scheme suits
all possible required criteria nor takes in account all the essential paramelers, thus for
particular necds new classification proposals must be developed. Traditionally, for the
classification of time serics, two approaches arc laken, the first onc is 1o classify
according to scalar parameters of the data [2], the second is to classify according to
the time scries’ morphology using a transformation [3]) or lower dimensionality
representation of the data [4.5). Here we propose a scheme that altempts to uncover
hidden relations among time scries classifying them according to the underlying
structures rather than the external waveform. The paper layout is as follows: in
section 2 we review the analysis techniques, SSA and PCA. in section 3 the
visualization and classification technique, MDS. Finally in section 4 we discuss the

experimental results.

2 Analysis of the Time Series

2.1 Singular-Spectrum Analysis
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Singular Spectrum Analysis (SSA) is a technique for time scries analysis that
incorporates clements of scveral disciplines such as mullivariate statistics,
multivariate geometry, dynamical systems and signal processing. It aims at a
decomposition of the data into a sum of a small number of interpretable components
such as trends, oscillatory patterns and random constituents [6]. The basic algorithm
of the SSA technique consists of four steps. Given a time series F=(fo. /i. ... . fa.1) of
length N and L an integer called “window length”

1. Construct the trajectory matrix X of the time series as follows:

set K = L+N+1 and define the L-lagged vectors X,= (.« fjor2) 1 = 1.2,...K

X = (X0 ,-2)r e = [ Xppern X ) (1)

2. Obtain the Singular Value Decomposition (SVD) of the matrix X via cigenvalues
and cigenvectors of the matrix S =XX". We thus obtain a representation of X as a
sum of rank-one biorthogonal matrices X, (/ = 1, ..., ), where d is the number of

nonzero singular values of X
3. Split the sct of indices / = {1, ..., d} into several groups /,,...,/, and sum the

matrices Xi whitin each group. The result of the stcp is the representation

” 2
X= ZX,' where X,' = Zx, ( )

1] ’CII

4. Average over the diagonals i+j=const of the matrices X, . This gives us a

decomposition of the original series F into a sum of series

m 3)
So=2 N n=0,., NI (
k=)

where for each & the series f,,(“ is the result of diagonal averaging of the matrix X, .

2.2 Principal Component Analysis

Related to the time series decomposition with the SSA technique, is the Principal
Component Analysis (PCA). Once the serics has been separated in different
component series, PCA is employed as a complementary tool. The PCA consists in
the scarch of lincally independent components which provide the maximum variance
of the data set and arc not correlated [7). PCA is gencerally used to condense the
amount of data and to extract important features from it. Colebrook applied a form of
SSA to biological oceanography and noted the duality with the principal component
analysis [8].

The procedure to compute the principal components is as follows: let X be a nxp
matrix whose rows rcpresent cases and its columns variables, in addition, X must be
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mean-centered. Let a be the yet to be determined projection weights column vector,

which will result in the greatest variance when X is projected into a. The variance
along a is defined as:

62 =(Xa)" (Xa)=a"X " Xa=a"Va (4)

s = YTV ; . " " y .
where 1= X X is the covariance matrix. The projected data variance, o 2 is expressed

as a function of ¥ and a. ’

. . 2 . ] . .
To maximize o, wec nced to apply a normalization restriction over a vectors

whichisa'a= 1.
Conscgucnlly. the optimization problem can be rewritten as the maximization of
the quantity:

u=a'Va-Aa’a-1) (5)

where A is a Lagrange multiplier. Differentiating with respect to a, we have:

Z=2Va—21a=o 6)

which is reduced to its eigenvalues form as:
(¥-Aa=0 )

Thercfore, the first principal component is the eigenvector associated with the
largest eigenvalue in the covariance matrix ¥, The second principal component is the
cigenvector associated with the second largest cigenvalue of ¥, and so on.

3 Multidimensional Scaling

Multidimensional Scaling (MDS) is a mcthod that represents similarity metrics
between pair of objects as distances between points in a lower dimensional space.
This representation allows the expert observe and explore the data structure and find
hidden regularities not easily distinguished in the aw numerical data [9).

MDS takes as input a proximity matrix A € M, .. Each element 5, of A represents
the proximities between the parameters where 8, = (6 - ¢)’ being ¢ the
aforcmentioned parameters. ' .

The algorithm begins with a random matrix X€M,_., where m is the desired
number of dimensions and n is the number of variables. Each value x, represents the

coordinates of the variable F, in the s-th dimension. '
Parting from such matrix, the distance among any two variablcs, { and / , can be

calculated using the Minkowsky gencral distance equation:

- p (8)
d-‘f =[Z(1’" —Xﬂ)p]

1=l
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Thus, a distance matrix D € M,,, can be obtained from X.
The MDS solution must be such that there is a maximum correspondence between

the initial proximities matrix A and the distance matrix D, which is accomplished
iteratively modifying X according to:

x = BX ®
2n
where the elements bij of B arc calculated using the following criteria:
-25, (10)

b= L ifi=
Y 8” ' J

& 11
bu=zz 33'“' if i=j o

by=0ifd,=0 (12)

Then a monotonous increasing relation 8, < &y = dy < di is assumed. To
determine the precision, a function that relates distances with similarity A9;) is

construcled:

f:8,—d, (13)
SO, Fa+bd,

where a and b are constants o establish.
Therefore, we can apply the S-Stress precision measure, defined as:

N T (14)

S - Streess = II: Y —(; -)——--

To complete MDS process, if a desired precision is not met, X is modificd
according to (15) and start over until the required S-Stress value is achicved.

4 Experimental Results

For the results we present, the experimental data set consists of 30 time series of
diverse dynamics as shown in Table 1, the reference nominal classification is
according to Sprott {10} and Figueroa [11]. All the time series have a length of 1000
data samplecs.

The methodology is as follows: the series were decomposed using SSA and then de
data was used to obtain the principal components using PCA. The matrix of the first
five principal components was fed to the MDS algorithm to obtain the time series
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representation in a bidimensional plane according to their structure. Only five
components were used since nearly 90% of the variance is contained in those
componcnls as we can observe in Table 2.

In Figure 1 we show the final clustering of the series and the three main groups that
were identified and the dynamic of the time scries that are part of the cluster. In the
figure we can appreciate that despite having difTerent dynamics, scveral signals can
belong to a group since they share similar inner structures, the local interactions of
those basic structures are what make the time series behave in a particular way.

Table 1. Experimental data sel

Time Series Dynaniics Time Series Dynamics
Sine periodic Dow Jones complex
Vand_crp_ol peniodic Kobe complex
Qperiodic2 quasiperiodic ECG complex
Qperiodic3 quasiperiodic EEG complex
Mackey-Glass chaotic ASClI complex
Logistic chaotic El nino complex
Lorcnz chaotic HIV DNA complex
Rossler chaotic Human DNA complex
Ikeda chaotic Lovaina complex
Henon chaotic Plasma complex
Canlor chaotic Primes complex
Tent chaotic SP500 complex
Al complex Star complex
DI complex Brownian motion random
Lascr complex White Noise random

For illustrative purposes, in Figure 2 we show the same plane, but now showing the
waveforms of the time serics. Here we can observe how the elements of the principal
clusters are related by the intricacy of the time series. In the leftmost cluster there are
very intricated, noisc-like time serics, at the right extreme there are somewhat smooth
waveforms and in the middle top are time series that are nol as intricate or as regular,
i.c. a blend of the first two clusters. From this results we can also speculate that a
discrete and qualitative classifications such as "chaotic”, "complex" and "random" are
not always the best suited as the dynamics of the phenomena can form a continuous

space if we use a quantitative approach.
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Fig. 1. Clustering of the series in the MDS planc
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Fig. 2. Waveforms of the experimental data set in the MDS plane
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Table 2. Variance percentage of the first five principal components

Time Scrics sebar PCI %eVar PC2 teVar PC3 SaVar PC4 SeVar PCS

Sine B3.158 11.842 0 0 0
Vandcrpol 59.752 38.884 0.698 0.609 0.028
Qpenodic2 88.116 11.608 0.247 0.021 0.005
Qpeniodic3 33.545 31.809 19.528 13.291 1.156
MackeyGlass 29777 27.577 16.732 12074 3.14
Logistic 16.341 15.725 10.029 9.394 6.667
Lorenz 89.332 10.031 0.604 0.031 0.002
Rossler 67.399 31.077 1.113 0.316 0.068
lkeda 8.037 8.03 1.72 7.589 6.976
Henon 16.398 14.592 10519 6.5 6.448
Cantor 6.404 6.375 5.757 5619 5.343
Tent 80.689 2.263 2.23 1.758 1.745
Al 43.903 35.677 6.724 6.425 2.145
D1 65.134 12.674 11.936 4.46 2.148
Laser 38.393 34912 5.853 5.391 3.606
Dowjones 96.723 2.114 0.431 0.227 0.149
Kobe 23.285 22457 11.749 10.45 6.366
Ecg 93.729 6.047 0.21 0012 0.002
Ecg 26.944 24.338 18.28 5.54] 3.208
Ascii 7.435 7.297 6.284 6.069 6.047
El nifo 87.321 5.593 299 1.8 0.908
HIV DNA 6.452 6.332 6.077 5.49] 5.297
HumanDNA 99.848 0.094 0.023 0.01 0.006
Lovaina 52.332 38.383 8.265 0.835 0.125
Plasma 18.074 17.677 7.626 6.517 5.984
Primos 7.343 6.482 6.359 6.107 5.526
SpS00 7.407 7.353 6.588 6.528 5.906
Star 56.218 31.681 1.665 1.143 1.07
Brownian m. 94.099 3.936 0.723 0.348 0.247
Whitenoise 6.449 6.178 6.044 5.309 5.296

5 Conclusions

We have analyzed a sel of several time series with diverse dynamics by means of two
complementary analysis  techniques, SSA and PCA and employed the
multidimensional scaling for the process of clustering and visualization of the
obtained data.

As we can see in the results, the time series did not form clusters based on their
dynamic bchavior. Instead, the grouping was based in the similarity of basic
structures that are common to the serics. This means that phenomena with difTerent
dynamics can sharc similar internal patterns although the local interactions of patterns
lead to diverse behavior

It is also worth of notice that the three main clusters that were identified are
conformed by time series of comparable intricacy, one group was formed from very

in_tricalc data another from somewhat smooth waveforms and a third one of a merge
of the previous.
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Thus, the proposed scheme can be useful to classify data of diverse nature with
hidden patterns, disregarding the outward appearance of the time series.
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